
Contribution of soil moisture retrievals to land data assimilation

products

R. H. Reichle,1,2 W. T. Crow,3 R. D. Koster,2 H. O. Sharif,4 and S. P. P. Mahanama1,2

Received 11 September 2007; revised 19 November 2007; accepted 6 December 2007; published 10 January 2008.

[1] Satellite measurements (retrievals) of surface soil
moisture are subject to errors and cannot provide
complete space-time coverage. Data assimilation systems
merge available retrievals with information from land
surface models and antecedent meteorological data,
information that is spatio-temporally complete but
likewise uncertain. For the design of new satellite
missions it is critical to understand just how uncertain
retrievals can be and still be useful. Here, we present a
synthetic data assimilation experiment that determines the
contribution of retrievals to the skill of land assimilation
products (soil moisture and evapotranspiration) as a
function of retrieval and land model skill. As expected,
the skill of the assimilation products increases with the skill
of the model and that of the retrievals. The skill of the soil
moisture assimilation products always exceeds that of the
model acting alone; even retrievals of low quality contribute
information to the assimilation product, particularly if
model skill is modest. Citation: Reichle, R. H., W. T. Crow,

R. D. Koster, H. O. Sharif, and S. P. P. Mahanama (2008),

Contribution of soil moisture retrievals to land data assimilation

products, Geophys. Res. Lett., 35, L01404, doi:10.1029/

2007GL031986.

1. Motivation

[2] A common approach to estimating soil moisture is to
drive a land surface model (LSM) with observed meteoro-
logical forcing. The physical formulations within the LSM
effectively integrate the forcing and produce estimates of soil
moisture and associated land surface fields [Rodell et al.,
2003]. These model products, however, are subject to error
due to errors in meteorological forcing, faulty estimates of
relevant parameters, and deficient LSM formulations.
[3] Indirect measurements (retrievals) of surface soil

moisture can be obtained from satellite sensors that measure
microwaves emitted by the land surface [Bindlish et al.,
2003; Njoku et al., 2003]. The data coverage, however, is
incomplete in space and time, and retrieval errors arise from
limitations in instrument design (including sensor hardware,
antenna, and orbit parameters), difficulties in parameterizing
the physical processes that relate passive microwave bright-

ness temperature (a measure of the microwave emission) to
soil moisture, and difficulties in obtaining the global dis-
tributions of the retrieval algorithm’s parameters.
[4] Data assimilation systems are designed to merge the

retrieval information with the spatially and temporally
complete information provided by the LSM [Drusch,
2007; Reichle et al., 2007] and produce a superior product
(e.g. root zone soil moisture). The assimilation system acts
to propagate the surface retrieval information into deeper
soil layers, giving the retrievals an otherwise unobtainable
relevance to such applications as the initialization of weather
and seasonal climate forecasts.
[5] Data assimilation systems are thus an invaluable part

of any satellite-based soil moisture measurement mission.
Consider, for example, that a mission assimilation product
will have some target accuracy requirement. For a given
level of model skill, a specific level of retrieval skill would
be needed to bring the merged product to the target
accuracy. The required skill level for the retrievals would
undoubtedly increase with a decrease in the skill of the raw
model product. Knowledge of such retrieval skill require-
ments is directly relevant to the planning of the L-band (1.4
GHz) Soil Moisture Active-Passive (SMAP) mission rec-
ommended by the National Academy of Sciences for launch
in the 2010–2013 timeframe [Space Studies Board, 2007].
Here, we describe a Data Assimilation-Observing System
Simulation Experiment (DA-OSSE) that measures the con-
tribution of surface soil moisture retrievals to the skill of the
assimilation estimates (of surface and root zone soil mois-
ture and evapotranspiration) as a function of the errors in the
satellite retrievals and in the LSM. By including a land data
assimilation system, our DA-OSSE differs fundamentally
from earlier ‘‘retrieval’’ OSSE’s [Crow et al., 2001, 2005a].

2. Approach

[6] The DA-OSSE consists of a suite of synthetic data
assimilation experiments based on integrations of two
distinct land models, one representing ‘‘truth’’, and the
other representing our flawed ability to model the true
processes. The skill of the retrievals, model estimates, and
assimilation products is measured in terms of the correlation
coefficient R between the time series of the various esti-
mates (expressed as anomalies relative to their seasonal
climatologies) and the assumed truth. The R measure is
appropriate because land surface models generally differ in
their soil moisture climatologies (in mean, variability, and
higher moments), so that skill cannot usefully be measured
in terms of RMS error. Knowledge of soil moisture anoma-
lies is, in any case, more important than knowledge of
absolute soil moisture for weather and climate forecast
initialization.
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[7] Figure 1 shows a flow diagram of the experiments.
‘‘True’’ soil moisture fields and passive microwave bright-
ness temperatures (L-band) are from a high-resolution
(1 km), long-term (1981–2000) integration of the TOP-
LATS land surface model [Peters-Lidard et al., 1997] over
the Red-Arkansas river basin in the United States, using
high-quality meteorological forcing data [Sharif et al.,
2007] and a horizontal-polarization radiative transfer model
with parameterized vegetation single scattering albedo (w)
and opacity (t) [Crow et al., 2005a]. The Red-Arkansas
domain was chosen because it exhibits a range of land cover
conditions that favor or prohibit soil moisture retrieval from
space. From the ‘‘true’’ brightness temperature fields, we
simulate NR = 12 different retrieval datasets of surface soil
moisture at a typical satellite footprint scale (36 km) and
temporal resolution (at most once a day) according to the
expected availability of retrievals from an L-band satellite
radiometer. Aggregation errors in brightness temperature

were modeled by adding synthetic noise at the footprint-
scale. Prior to running the retrieval model (the inverse
radiative transfer model), unbiased Gaussian noise terms
were added to the footprint-scale canopy vegetation water
content (VWC), VWC-to-canopy opacity conversion
parameters, and near-surface soil temperature. Starting from
the design error parameters of the Hydros soil moisture
mission concept [Entekhabi et al., 2004; Crow et al., 2005a,
2005b], the noise variances were successively changed to
create a set of soil moisture retrieval products with variable
accuracies. Anomaly time series correlation coefficients R
for the synthetic retrieval datasets range from 0.26 to 0.91
(Table 1). These and all subsequent R-values for soil
moisture are computed from daily, catchment-scale (see
below) time series for the 19-year experiment period (after
subtracting the monthly climatology) and then area-aver-
aged over the entire domain.
[8] Next, we construct NM = 8 distinct modeling scenar-

ios by integrating the NASA Catchment land surface model
(CLSM) [Koster et al., 2000] with various forcing datasets
over the Red-Arkansas domain, divided into 308 catch-
ments with a median linear scale of 35 km [Reichle et al.,
2008]. Specifically, three different base forcing datasets are
used here (Table 2): The first is the high-resolution ‘‘truth’’
forcing interpolated to catchment space, and the second and
third are derived from two different global reanalysis data-
sets that have been bias-corrected with additional observa-
tions [Dirmeyer and Tan, 2001; Sheffield et al., 2006].
Three of the eight modeling scenarios are constructed by
forcing CLSM with the three base forcing datasets; the rest
are constructed by forcing CLSM with time-shifted (de-
graded) versions of these datasets.
[9] The R-values for the model estimates without data

assimilation (Table 2) range from 0 to about 0.8 for surface
and root zone soil moisture and from 0 to 0.65 for (monthly)
evapotranspiration (ET). Since only monthly values of ET
were saved in the Sharif et al. [2007] truth integration, we
use monthly anomalies to assess the skill of ET estimates.
Structural differences between TOPLATS and CLSM and
scale differences imply that CLSM estimates are not perfect
even when forced with the ‘‘truth’’ meteorological dataset.
For example, in the TOPLATS ‘‘truth’’ the surface and root
zone soil moisture refer to the top 5 cm and the top 40 cm of
the soil column, respectively, whereas the corresponding
CLSM surface and root zone values are for the top 2 cm and
the top 100 cm, respectively.
[10] Because the ‘‘true’’ TOPLATS climatology of sur-

face soil moisture differs from that of CLSM, each retrieval

Figure 1. Flow diagram of the DA-OSSE.

Table 1. Skill of Synthetic Retrieval Datasetsa

Retrievals Rsf

R1 0.91
R2 0.86
R3 0.78
R4 0.70
R5 0.63
R6 0.57
R7 0.52
R8 0.48
R9 0.42
R10 0.35
R11 0.30
R12 0.26
aRsf is the anomaly time series correlation coefficient of surface soil

moisture with respect to truth data.

Table 2. Model Scenariosa

Model Scenario

M1 M2 M3 M4 M5 M6 M7 M8

Base forcing dataset F1 F2 F1 F3 F3 F1 F3 F1
Forcing shift [days] 0 0 7 0 7 28 28 365
Rsf [dimensionless] 0.76 0.63 0.50 0.41 0.37 0.28 0.22 �0.01
Rrz [dimensionless] 0.78 0.55 0.64 0.46 0.44 0.41 0.31 0.01
RET [dimensionless] 0.65 0.38 0.58 0.37 0.30 0.19 0.15 0.02

aForcing datasets are from (F1) [Sharif et al., 2007], (F2) [Dirmeyer and
Tan, 2001], and (F3) [Sheffield et al., 2006]. Anomaly time series
correlation coefficient R with respect to truth data indicates model skill
(without data assimilation) for (Rsf) surface soil moisture, (Rrz) root zone
soil moisture, and (RET) monthly ET.
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dataset is first scaled to the soil moisture climatology of
each model scenario for bias removal [Reichle and Koster,
2004]. Next, each set of scaled retrievals is assimilated into
each model scenario with a ‘‘one-dimensional’’ ensemble
Kalman filter (EnKF) using 12 ensemble members [Reichle
et al., 2007]. Only soil moisture is updated in the EnKF, but
ET is also impacted because it depends on soil moisture.
Poorly specified model and observation error parameters
negatively affect the quality of the assimilation products.
Each of the NR�NM = 96 assimilation experiments must
achieve near-optimal performance; otherwise the informa-
tion contributed by the retrievals cannot be compared across
experiments. We therefore use an adaptive EnKF and
dynamically estimate the model and observation error
parameters [Reichle et al., 2008]. The sources and structure

of the modeling uncertainties as well as initial estimates
of the input error parameters are based on our experience
with retrievals from the Advanced Microwave Scanning
Radiometer for the Earth Observing System (AMSR-E)
[Reichle et al., 2007, Table 1].

3. Results

[11] Each of the 96 assimilation experiments is a unique
combination of a retrieval dataset (with a certain level of
skill, measured in terms of R) and a model scenario (with its
own level of skill). We can thus plot two-dimensional
surfaces of skill in the data assimilation products as a
function of retrieval and model skill. Figure 2a shows the
two dimensional surface (linearly interpolated from the 96

Figure 2. (a, b) Skill (R) and (c, d) skill improvement (DR) of assimilation product for surface (Figures 2a and 2c) and
(Figures 2b and 2d) root zone soil moisture as a function of the (ordinate) model and (abscissa) retrieval skill. Skill
improvement is defined as skill of assimilation product minus skill of model estimates. Each plus sign indicates the result of
one 19-year assimilation integration over the entire Red-Arkansas domain. Also shown are results from Reichle et al.
[2007] for (triangle) AMSR-E and (square) SMMR.
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data points) corresponding to the surface soil moisture
product. Filling the contour plot is a computational chal-
lenge. Each of the 96 crosses in the plot indicates the
performance of a 19-year assimilation integration over the
entire Red-Arkansas domain (and can be mapped back to
the specific retrieval/model combination using Tables 1
and 2). As expected, the skill of the assimilation product
generally increases with the skill of the model and the skill
of the retrievals, for both surface (Figure 2a) and root zone
(Figure 2b) soil moisture estimates. Except for very low
model skill, the contour lines are more closely aligned with
lines of constant model skill; that is, the skill of the
assimilation product is more sensitive to model skill than
to retrieval skill.
[12] Figure 2 also shows skill improvement through data

assimilation, defined as the skill of the assimilation product
minus the skill of the model estimates (without assimila-
tion). Specifically, Figures 2c and 2d show, for a given level
of accuracy in the stand-alone model product, how much
information can be added to the soil moisture products
through assimilation of satellite retrievals of surface soil
moisture with a given uncertainty. Note that the skill of the
surface and root zone soil moisture assimilation products
always exceeds that of the model. As expected, the
improvements in R through assimilation increase with
increasing retrieval skill and decrease with increasing model
skill. Perhaps most importantly, though, is that even retriev-
als of low quality contribute some information to the
assimilation product, particularly if model skill is modest.
[13] We can compare previously published skill levels

with the results of Figure 2. For 23 locations across the
contiguous United States having in situ observations appro-
priate for validation, Reichle et al. [2007, Table 2] report,
for surface soil moisture, average R values of 0.38, 0.43,
and 0.50 for AMSR-E retrievals, CLSM estimates, and their
assimilation product, respectively. From the contours of
Figure 2a we expect that for retrievals with R = 0.38 and
a model with R = 0.43, the assimilation product would have
skill of about R = 0.50, which is indeed consistent with the
AMSR-E result (indicated with a triangle in Figure 2a). For
root zone soil moisture, Reichle et al. [2007] show that the
assimilation of AMSR-E surface soil moisture retrievals
also yields improvements, though these improvements fall
somewhat short of those suggested by Figure 2b. Possible
explanations include (1) the imperfect translation of infor-
mation from the surface layer to the root zone in the data
assimilation system and (2) the fact that the in situ data used
for validation of the AMSR-E result are themselves far from
perfect (unlike the perfectly known truth of the synthetic
experiment presented here). Figure 2 also includes the
Reichle et al. [2007] results for assimilating retrievals from
the historic Scanning Multichannel Microwave Radiometer
(SMMR), which are similarly consistent with the contours.
Note that R values for SMMR results are based on monthly
mean data, and that the validating in situ data for the
AMSR-E and SMMR results are not within the geograph-
ical domain of our synthetic experiment.
[14] Note that the skill of the surface soil moisture

assimilation product (Figure 2a) does not always match or
exceed the skill of the retrievals, in particular for poor
model skill (along the abscissa), where the retrieval skill
exceeds the assimilation skill by up to 0.4 (in terms of R).

There are several reasons for this apparent mismatch. First,
the retrieval skill can only be computed over times and
locations for which retrievals are available, whereas the
assimilation (and model) skill is computed over the entire
experiment period and domain, because applications would
presumably use the spatio-temporally complete product.
Second, the truth and retrieval data are instantaneous data,
whereas the assimilation products are daily averages (due to
data storage constraints). Third, the R calculation penalizes
the assimilation product because retrieval skill is computed
from unscaled retrieval and truth data (which share a
consistent climatology), whereas the assimilation product
is evaluated without (non-linearly) scaling it back to the
truth climatology. When controlling for the impact of these
three factors, the skill of the surface soil moisture assimi-
lation product along the abscissa is within 0.15 of the
corresponding retrieval skill (not shown). The remaining
difference may have a number of sources: (1) the assimila-
tion system does not optimize R itself, (2) nonlinearities
pervade the system, (3) the adaptive tuning of model error
parameters and the scaling algorithm are imperfect, (4)
differences exist in the layer depths for the assumed ‘‘truth’’
and CLSM, and (5) the ensemble size (12 members) used in
the EnKF is small.
[15] Finally, Figure 3 shows the skill improvement (rel-

ative to the raw model product) for monthly mean ET
estimates from the data assimilation system. As expected,
the assimilation of surface soil moisture retrievals contrib-
utes the most when retrievals are skillful and the model is
poor. Note, however, that ET estimates from the adaptive
assimilation system are worse than model estimates when
the model skill is very high to begin with. This is not the
case with the non-adaptive filter (not shown) and can be
explained by minor bias issues associated with the dynamic
adjustment of model error parameters, a feature of the
adaptive system [Reichle et al., 2008]. These technicalities
will be addressed in future research. Nevertheless, with the
current system the assimilation of surface soil moisture
retrievals yields, on average, modest improvements in ET
estimates.

4. Conclusions

[16] With the DA-OSSE framework described here, we
can quantify the information added to land assimilation
products by satellite retrievals of surface soil moisture. In
this paper, we present the general framework and show how
the added information varies with both model skill and
retrieval skill. The general framework permits detailed and
comprehensive error budget analyses for data assimilation
products. The framework can be used, for example, to study
specific trade-offs in sensor design or ancillary data require-
ments, assessing the impact of each on the quality of the
end-product that will be used in science and applications.
[17] A major component of the DA-OSSE is the deter-

mination of experiment-specific input error covariances that
enable near-optimal assimilation performance and permit
objective comparisons across experiments, as in the surface
plots of Figure 2. We are confident that the adaptive EnKF
used here [Reichle et al., 2008] adequately meets this
requirement of the analysis. The adaptive algorithm may
be further improved through continued development and
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testing, which would ostensibly lead to improved DA-OSSE
results.
[18] The contribution of soil moisture retrievals to the

skill of land data assimilation products also critically
depends on the realism of the imposed model error esti-
mates. If the assumed model errors (stemming from differ-
ences between the ‘‘truth’’ land model and CLSM, along
with the imposed synthetic model and forcing errors) are not
reflective of actual errors, the DA-OSSE may produce
overly optimistic improvements in skill that will not be
achieved when real observations are assimilated. We note
again, however, the consistency between our synthetic
results and those from existing AMSR-E and SMMR data
assimilation exercises, which do employ real observations.
[19] Conceptually, extending the DA-OSSE to continen-

tal or global scales is straightforward, but computational
costs may prohibit a comparable analysis (e.g., a continen-
tal-scale version of Figure 2). Similarly, it is straightforward
to include higher-resolution soil moisture retrievals, such as
those obtained from radar backscatter measurements, in the
retrieval algorithm. An active-passive sensor is at the core
of the SMAP mission concept. Again, however, computa-
tional costs limit the resolution that can be examined for a
given domain size. Another possible extension of the DA-
OSSE framework is to assimilate microwave brightness
temperatures directly (as opposed to surface soil moisture
retrievals) and then examine how uncertainties in the
retrieval process may be mitigated through use of a priori

information from the land surface model, notably surface
soil temperature. As the focus on data assimilation products
grows in future land surface satellite missions, our DA-
OSSE framework presents an important end-to-end tool for
mission planning and uncertainty assessment.
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